

DEVELOPMENT OF RENEWABLE ENERGY PROJECTS

IN HONG KONG

Hongkong Electric's Experience

RENEWABLE DEVELOPMENT POLICY

- In 2005, the Government announced a renewable development policy to have 1 to 2% of the total electricity generation in HK coming from renewable energy by 2012.
- In September 2010, the Environment Bureau launched a public consultation on Hong Kong's Climate Change Strategy & Action Agenda, in which a target of 3 to 4% renewable energy, including IWMF, by 2020 has been set.
- In recent years, HK Electric has been embarking on developing renewable energy projects in HK, focusing on wind and solar energies.

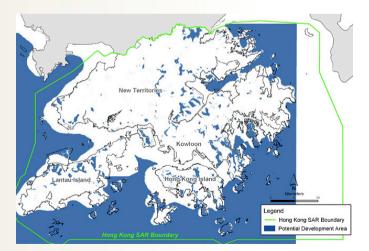
WIND ENERGY

The "Lamma Winds" Experience

- Developed by HK Electric, the "Lamma Winds" is the 1st commercial scale wind turbine in HK. It is a 800kW wind turbine commissioned in February 2006 as a demonstration project.
 - Average capacity factor (2006 2009):

 2006
 11.6%

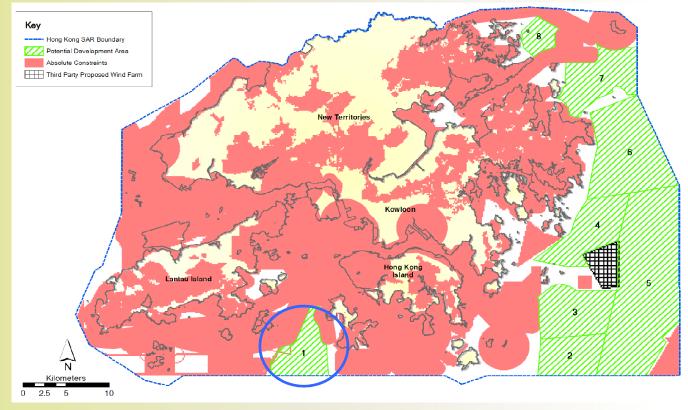
 2007
 12.4%
 - 2008 11.5%
 - 2009 15.7%



Offshore Wind Farm

- The "Lamma Winds" experience reveals the lack of wind potentials in the land terrains in HK.
- Besides, there is also lack of large flat land in HK for development of onshore wind farms.
- Wind potentials of offshore sites are much higher. Feasibility studies were then focused on identifying a suitable offshore wind farm site.

Hong Kong Map


Areas with Adequate Wind Resource for Development of Wind Farm

港燈 HK Electric

Site Search

- 8 short-listed offshore sites have been reviewed.
- South West Lamma is the most preferred site for offshore wind farm development.

Advantages of SW Lamma Site

- Least environmental impact
- Merits in technical & geographical aspects:
 - Shorter transmission cable
 - Utilization of LPS for logistics support during construction
 - Shallower water compared with Eastern Offshore sites
- Lower total costs

- Detailed EIA studies on SW Lamma Site commenced in mid 2008
- The studies covered impacts on water quality, terrestrial ecology, marine ecology, landscape and visual, fisheries, and other aspects.
- Report findings: Environmental impacts are light to moderate. The impacts are acceptable after suitable mitigation measures are implemented.
- The EIA Report was approved by EPD on 14 May 2010, and an Environmental Permit was issued to HK Electric on 8 June 2010.

General Information of Offshore Wind Farm

Location

4 km Southwest of Lamma Island

- Capacity About 100 MW
- No. of Wind Turbine 28 35 nos.
- Wind Turbine Capacity

2.3 – 3.6 MW

About 80m above mean sea level

Hub Height

Site Boundary Area

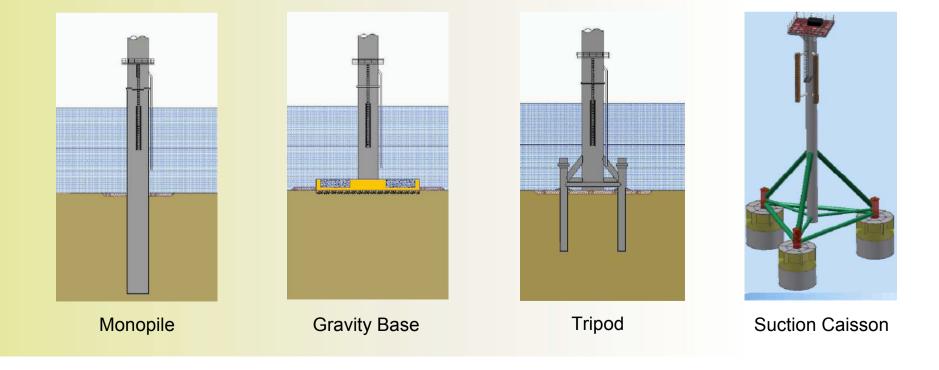
600 Ha

Water Depth 17 – 22 m

Components of Offshore Wind Farm

Wind Turbine

Substation


Wind Monitoring Mast

Wind Turbine Foundation

- Following types of foundations are technically available for offshore wind farms:-
- Monopile and gravity based foundations are mostly adopted in existing offshore wind farm installations.

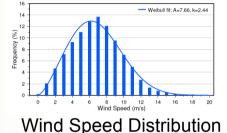
Wind Turbine Foundation

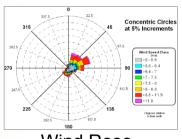
EIA concludes that mono-pile is an acceptable type of foundation for SW Lamma Offshore Wind Farm

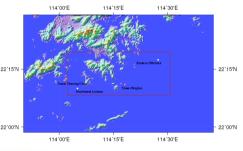
- No waste generated, better environmental performance
- Commonly adopted in other offshore wind farms in Europe
- Proven mitigation measures related to the management of underwater sound impacts
- Shorter construction time

• Sizes of the major offshore wind turbine models are listed below:

Supplier	Model	Capacity (MW)	Rotor Dia (m)	Cut-in / Cut-out / Rated Wind Speed (m/s)
Vestas	V90-3.0MW	3	90	4 / 25 / 15
Siemens	SWT-2.3-82	2.3	82	3.5 / 25 /13
	SWT-3.6-107	3.6	107	3-5 / 25 / 13-14
GE	4.0	4	110	3 / 25-28 / 14
Sinovel	SL3000	3	91.3	3.5 / 25 / 13
RE Power	5M	5	126	3 / 30 / 13


Offshore wind turbines with capacities in the range of 2.3MW to 3.6MW have been widely installed in Europe and hence is adopted for the EIA study.

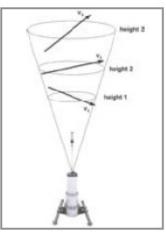



Wind Monitoring

 Desktop studies based on historical wind data archive indicated that the average wind speeds at the wind farm site ranged between 6.8-7.1m/s.

Wind Resource Map

- IEC Class 1A wind turbine models will be adopted to withstand typhoon condition with a maximum gust of 70m/s for a consecutive period of 3 second.
- The next stage is to carry out in-situ wind data collection by installing a LIDAR System at the wind farm site to facilitate detailed engineering design and wind farm optimization.



Wind Monitoring – LIDAR System

Advantages of LIDAR System

- Capturing meteorological data by measuring the Doppler shift of the laser beam scattered by microscopic airborne particulates.
- High portability suitable for adopting as temporary installation for 1 year wind monitoring.
- Design requirement for temporary foundation platform will be far less stringent leading to a substantial reduction in foundation cost.

LIDAR System on offshore platform

LIDAR Technology

Wind Turbine Installation

- Pre-assembly in Lamma Power Station
- Jack-up barge for wind turbine installation
- Crane vessel for full assembly installation

Pre-assembly Harbour

Jack Up Barge

Crane Vessel

Wind Farm's Environmental Benefits

- Estimated annual generation of around 170 million units of electricity, enough energy for around 50,000 families in HK
- No fuel required, thus offsetting use of around 62,000 tonnes of coal per annum
- Reduce 150,000 tonnes of carbon dioxide emission per annum
- Reduce 520 tonnes of sulphur dioxide emission per annum
- Reduce 240 tonnes of nitrogen oxide emission per annum

Offshore Wind Farm – Commissioning Schedule

- One-year onsite wind monitoring will start in 2011.
- Tentative commissioning year is 2015.

Lillgrund Wind Farm in Sweden

SOLAR ENERGY

- As a pilot project for the Shenzhen Hong Kong Innovative Circle, DuPont Apollo established a plant in Shenzhen for manufacture of Thin Film Photovoltaic (TFPV) panels in 2008.
- HK Electric is the first customer to place order for a commercial scale TFPV system in November 2009.

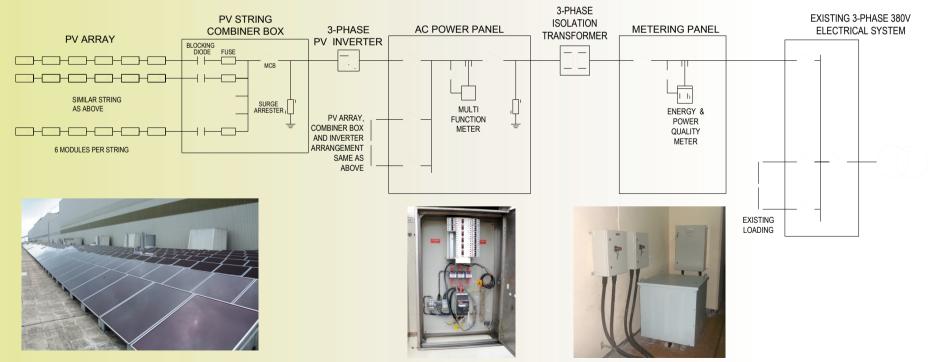
The Lamma TFPV System

- 5,500 panels each sized at 1.4m x 1.1m
- Rated output of each panel is 100Wp
- Total capacity 550kW
- To be installed at the Lamma Power Station roofs
- The largest PV system in HK

Advantages of amorphous silicon (a-Si) TFPV

- Less energy use for production Energy payback time for a-Si TFPV is about 1.5 year (c.f. about 2.5 years for c-Si module)
- More suitable in tropical environment Temp. coefficient for Pm of a-Si TFPV is about - 0.25% / °C rise (c.f. about -0.4 % / °C rise for c-Si module)
- Better weak-light performance
 Naturally, high shunt resistance of a-Si TFPV
 maintains module efficiency at low irradiance

Major Components of the PV System



- Automatic grid connection
- With Maximum Power Point Tracking (MPPT) control
- Anti-islanding Protection

Quality Analyzer

Remote Monitoring System

- Solar Irradiance
- Ambient
 Temperature
- Module Temperature
- PV Inverter Status

- Energy Meter
- Power Quality Analyzer

Remote Monitoring Computer at Central Control Room

PV System Overview

Individual Equipment Monitoring

Construction

100,000 metres of cables and cable supports

47 PV inverters, **47** combiner boxes, **25** Electrical and instrument panels

250 Ton crane for lifting of materials to EL+80.15m roof areas

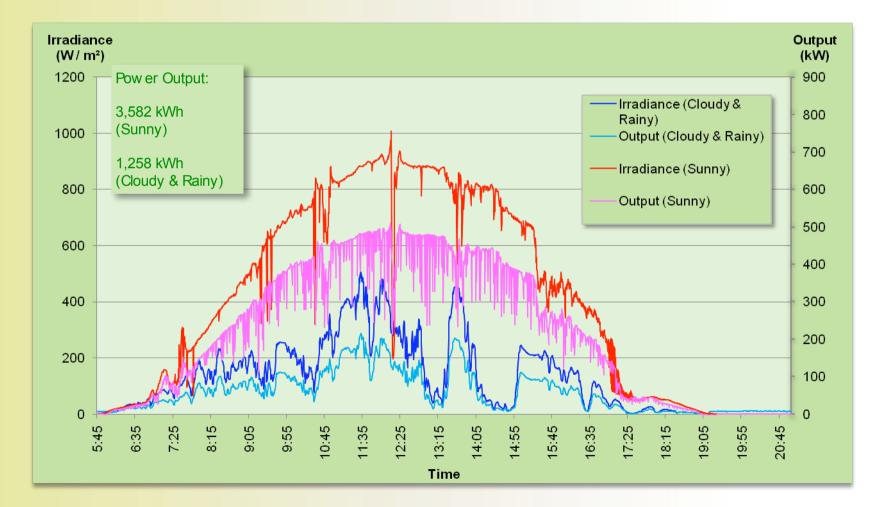
Construction

Units 1-3 Boiler House Roof

Before

After

Project Programme


- 4 ~ 9/2009
- 10 ~ 11/2009
- 12/2009
- 4 ~ 6/2010
- End 6/2010

- **Feasibility Study**
- Request for Offer & Assessment
 - **Order Placing**
 - **Construction**, testing & commissioning
 - **Total Completion**

Power output in response to solar irradiance variation



Plant Performance

	Design	Actual
Capacity	550kW	550kW
Annual Output	620,000kWh(*)	320,248kWh(**)
Capacity Factor	12.9%	18.24%(**)
Design Life	20 years	20 years

(*) Adequate for consumption of 150 families(**) From 1/7/10 up to 11/11/10

Environmental Benefits

- Zero emissions
- Reduce 520 tons of CO₂ per annum
- Equivalent to planting 22,000 trees

